The SnRK2 kinases modulate miRNA accumulation in Arabidopsis
نویسندگان
چکیده
MicroRNAs (miRNAs) regulate gene expression and play critical roles in growth and development as well as stress responses in eukaryotes. miRNA biogenesis in plants requires a processing complex that consists of the core components DICER-LIKE 1 (DCL1), SERRATE (SE) and HYPONASTIC LEAVES (HYL1). Here we show that inactivation of functionally redundant members of the SnRK2 kinases, which are the core components of abscisic acid (ABA) and osmotic stress signaling pathways, leads to reduction in miRNA accumulation under stress conditions. Further analysis revealed that the steady state level of HYL1 protein in plants under osmotic stress is dependent on the SnRK2 kinases. Additionally, our results suggest that the SnRK2 kinases physically associate with the miRNA processing components SE and HYL1 and can phosphorylate these proteins in vitro. These findings reveal an important role for the SnRK2 kinases in the regulation of miRNA accumulation and establish a mechanism by which ABA and osmotic stress signaling is linked to miRNA biogenesis.
منابع مشابه
Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملHeterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana
Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and fo...
متن کاملArabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo.
Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we co...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis.
Protein phosphorylation has pivotal roles in ABA and osmotic stress signaling in higher plants. Two protein phosphatase genes, ABI1 and ABI2, are known to regulate these signaling pathways in Arabidopsis: The identity of ABA-activated protein kinases required for the ABA signaling, however, remains to be elucidated. Here we demonstrate that two protein kinases, p44 and p42, were activated by AB...
متن کامل